到了“意识”!)
这是最强版本的人择原理,也称为“最终人择原理”。
可以想象,Tegmark等多宇宙论的支持者见到自己的提议被演绎成了这么一个奇谈怪论后
,是怎样的一种哭笑不得的心态。这位宾夕法尼亚大学的宇宙学家不得不出来声明,说“
永生”并非MWI的正统推论。他说一个人在“死前”,还经历了某种非量子化的过程,使
得所谓的意识并不能连续过渡保持永存。可惜也不太有人相信他的辩护。
关于这个问题,科学家们和哲学家们无疑都会感到兴趣。支持MWI的人也会批评说,大量
宇宙样本中的“人”的死去不能被简单地忽略,因为对于“意识”我们还是几乎一无所知
的,它是如何“连续存在”的,根本就没有经过考察。一些偏颇的意见会认为,假如说“
意识”必定会在某些宇宙分支中连续地存在,那么我们应该断定它不但始终存在,而且永
远“连续”,也就是说,我们不该有“失去意识”的时候(例如睡觉或者昏迷)。不过,
也许的确存在一些世界,在那里我们永不睡觉,谁又知道呢?再说,暂时沉睡然后又苏醒
,这对于“意识”来说好像不能算作“无意义”的。而更为重要的,也许还是如何定义在
多世界中的“你”究竟是个什么东西的问题。总之,这里面逻辑怪圈层出不穷,而且几乎
没有什么可以为实践所检验的东西,都是空对空。我想,波普尔对此不会感到满意的!
关于自杀实验本身,我想也不太有人会仅仅为了检验哥本哈根和MWI而实际上真的去尝试
!因为不管怎么样,实验的结果也只有你自己一个人知道而已,你无法把它告诉广大人民
群众。而且要是哥本哈根解释不幸地是正确的,那你也就呜乎哀哉了。虽说“朝闻道,夕
死可矣”,但一般来说,闻了道,最好还是利用它做些什么来得更有意义。而且,就算你
在枪口前真的不死,你也无法确实地判定,这是因为多世界预言的结果,还是只不过仅仅
因为你的运气非常非常非常好。你最多能说:“我有99。999999。。99%的把握宣称,多世
界是正确的。”如此而已。
根据Shikhovtsev最新的传记,埃弗莱特本人也在某种程度上相信他的“意识”会沿着某
些不通向死亡的宇宙分支而一直延续下去(当然他不知道自杀实验)。但具有悲剧和讽刺
意味的是,他一家子都那么相信平行宇宙,以致他的女儿丽兹(Liz)在自杀前留下的遗
书中说,她去往“另一个平行世界”和他相会了(当然,她并非为了检验这个理论而自杀
)。或许埃弗莱特一家真的在某个世界里相会也未可知,但至少在我们现在所在的这个世
界(以及绝大多数其他世界)里,我们看到人死不能复生了。所以,至少考虑在绝大多数
世界中家人和朋友们的感情,我强烈建议各位读者不要在科学热情的驱使下做此尝试。
我们在多世界理论这条路上走得也够久了,和前面在哥本哈根派那里一样,我们的探索越
到后来就越显得古怪离奇,道路崎岖不平,杂草丛生,让我们筋疲力尽,而且最后居然还
会又碰到“意识”,“永生”之类形而上的东西(真是见鬼)!我们还是知难而退,回到
原来的分岔路口,再看看还有没有别的不同选择。不过我们在离开这条道路前,还有一样
东西值得一提,那就是所谓的“量子计算机”。1977年,埃弗莱特接受惠勒和德威特等人
的邀请去德克萨斯大学演讲,午饭的时候,德威特特意安排惠勒的一位学生坐在埃弗莱特
身边,后者向他请教了关于希尔伯特空间的问题。这个学生就是大卫•;德义奇(Dav
id Deutsch)。
三
计算机的发明是20世纪最为重要的事件之一,这个新生事物的出现从根本上改变了人类的
社会,使得我们的能力突破极限,达到了一个难以想象的地步。今天,计算机已经渗入了
我们生活的每一个角落,离开它我们简直寸步难行。别的不说,各位正在阅读的本史话,
便是用本人的膝上型计算机输入与编辑的,虽然拿一台现代的PC仅仅做文字处理简直是杀
鸡用牛刀,或者拿伊恩•;斯图尔特的话说,“就像开着罗尔斯•;罗伊斯送牛奶
”,但感谢时代的进步,这种奢侈品毕竟已经进入了千家万户。而且在如今这个信息商业
社会,它的更新换代是如此之快,以致人们每隔两三年就要不断地开始为自己“老旧”电
脑的升级而操心,不无心痛地向资本家们掏出那些好不容易积攒下来的银子。
回头看计算机的发展历史,人们往往会慨叹科技的发展一日千里,沧海桑田。通常我们把
宾夕法尼亚大学1946年的那台ENIAC看成世界上的第一台电子计算机,不过当然,随着各
人对“计算机”这个概念的定义不同,人们也经常提到德国人Konrad Zuse在1941年建造
的Z3,伊阿华州立大学在二战时建造的ABC(Atanasoff…Berry puter),或者图灵小
组为了破解德国密码而建造的Collosus。不管怎么样,这些都是笨重的大家伙,体积可以
装满整个房间,有的塞满了难看的电子管,有的拖着长长的电线,输入输出都靠打孔的纸
或者磁带,和现代轻便精致的家庭电脑比起来,就好像美女与野兽的区别。但是,如果我
们把看起来极为不同的这两位从数学上理想化,美女和野兽在本质上却是一样的!不管是
庞大的早期计算机,还是我们现在使用的PC,它们其实都可以简化成这样一种机器:它每
次读入一个输入,并且视自己当时内态的不同,按照事先编好的一个规则表做出相应的操
作:这操作可以是写入输出,或者是改变内态,或者干脆什么都不做乃至停机。这里的关
键是,我们机器的输入和输出可以是无限多的,但它的内态和规则表却必须是有限的。这
个模型其实也就是一切“计算机”的原型,由现代计算机的奠基人之一阿兰•;图灵
(Alan Turing)提出,也称作“图灵机”(The Turing Machine)。在图灵的原始论文
中,它被描述成某种匣子样的东西,有一根无限长的纸带贯穿其中,一端是作为输入,另
一端则是输出。磁带上记录了信息,一般来说是0和1的序列。这台机器按照需要移动磁带
,从一端读入数据,并且按照编好的规则表进行操作,最后在另一端输出运算结果。
我们如今所使用的电脑,不管看上去有多精巧复杂,本质上也就是一种图灵机。它读入数
据流,按照特定的算法来处理它,并在另一头输出结果。从这个意义上来讲,奔腾4和286
的区别只不过是前者更快更有效率而已,但它们同样做为图灵机来说,所能做到的事情其
实是一样多的!我的意思是,假如给予286以足够的时间和输出空间(可以记录暂时的储
存数据),奔腾机所能做到的它同样可以做到。286已经太高级了,即使退化成图灵机最
原始的形式,也就是只能向左或向右移动磁带并做出相应行动的那台机器,它们所能解决
的事情也是同样多的,只不过是快慢和效率的问题罢了。
计算机所处理的信息在最基本的层面上是2进制码,换句话说,是0和1的序列流。对计算
机稍稍熟悉的朋友们都知道,我们把每一“位”信息称作一个“比特”(bit,其实是bin
ary digit的缩写),例如信息1010,就包含了4个bits。8个bits就等于1个byte,1024个
bytes就是1K,1024K=1M,1024M=1G,各位想必都十分清楚了。
对于传统的计算机来说,1个bit是信息的最小单位。它要么是0,要么是1,对应于电路的
开或关。假如一台计算机读入了10个bits的信息,那相当于说它读入了一个10位的2进制
数(比方说1010101010),这个数的每一位都是一个确定的0或者1。这在人们看来,似乎
是理所当然的。
但是,接下来就让我们进入神奇的量子世界。一个bit是信息流中的最小单位,这看起来
正如一个量子!我们回忆一下走过的路上所见到的那些奇怪景象,量子论最叫人困惑的是
什么呢?是不确定性。我们无法肯定地指出一个电子究竟在哪里,我们不知道它是通过了
左缝还是右缝,我们不知道薛定谔的猫是死了还是活着。根据量子论的基本方程,所有的
可能性都是线性叠加在一起的!电子同时通过了左和右两条缝,薛定谔的猫同时活着和死
了。只有当实际观测它的时候,上帝才随机地掷一下骰子,告诉我们一个确定的结果,或
者他老人家不掷骰子,而是把我们投影到两个不同的宇宙中去。
大家不要忘记,我们的电脑也是由微观的原子组成的,它当然也服从量子定律(事实上所
有的机器肯定都是服从量子论的,只不过对于传统的机器来说,它们的工作原理并不主要
建立在量子效应上)。假如我们的信息由一个个电子来传输,我们规定,当一个电子是“
左旋”的时候,它代表了0,当它是“右旋”的时候,则代表1(通常我们会以“上”和“
下”来表示自旋方向,不过可能有读者会对“上旋”感到困惑,我们换个称呼,这无所谓
)。现在问题来了,当我们的电子到达时,它是处于量子叠加态的。这岂不是说,它同时
代表了0和1?
这就对了,在我们的量子计算机里,一个bit不仅只有0或者1的可能性,它更可以表示一
个0和1的叠加!一个“比特”可以同时记录0和1,我们把它称作一个“量子比特”(qubi
t)。假如我们的量子计算机读入了一个10bits的信息,所得到的就不仅仅是一个10位的
二进制数了,事实上,因为每个bit都处在0和1的叠加态,我们的计算机所处理的是2^10
个10位数的叠加!
换句话说,同样是读入10bits的信息,传统的计算机只能处理1个10位的二进制数,而如
果是量子计算机,则可以同时处理2^10个这样的数!
利用量子演化来进行某种图灵机式的计算早在70年代和80年代初便由Bennett,Benioff等
人进行了初步的讨论。到了1982年,那位极富传奇色彩的美国物理学家理查德•;费
因曼(Richard Feynman)注意到,当我们试图使用计算机来模拟某些物理过程,例如量
子叠加的时候,计算量会随着模拟对象的增加而指数式地增长,以致使得传统的模拟很快
变得不可能。费因曼并未因此感到气馁,相反,他敏锐地想到,也许我们的计算机可以使
用实际的量子过程来模拟物理现象!如果说模拟一个“叠加”需要很大的计算量的话,为
什么不用叠加本身去模拟它呢?每一个叠加都是一个不同的计算,当所有这些计算都最终
完成之后,我们再对它进行某种幺正运算,把一个最终我们需要的答案投影到输出中去。
费因曼猜想,这在理论上是可行的,而他的确猜对了!
1985年,我们那位在埃弗莱特的谆谆教导和多宇宙论的熏陶下成长起来的大卫•;德
义奇闪亮登场了。他仿照图灵当年走的老路子,成功地证明了,一台普适的量子计算机是