克常常利用这一表象来形象地描写自然的无限性,甚至描写上帝本身的无限性。例如,我们发现哈勒尔在一首著名的描写上帝的无限性的诗里,说道:我们积累起庞大的数字,一山又一山,一万又一万,世界之上,我堆起世界,时间之上,我加上时间,当我从可怕的高峰,仰望着你,——以眩晕的眼:所有数的乘方,再乘以万千遍,距你的一部分还是很远。
这里我们便首先遇着了量,特别是数,不断地超越其自身,这种超越,康德形容为“令人恐怖的”。其实真正令人恐怖之处只在于永远不断地规定界限,又永远不断地超出界限,而并未进展一步的厌倦性。上面所提到的那位诗人,在他描写坏的无限性之后,复加了一行结语:我摆脱它们的纠缠,你就整个儿呈现在我前面。这意思是说,真的无限性不可视为一种纯粹在有限事物彼岸的东西,我们想获得对于真的无限的意识,就必须放弃那种无限进展(progressusinineinitum)。
附释三:大家知道,毕泰哥拉斯曾经对于数加以哲学的思考,他认为数是万物的根本原则。这种看法对于普通意识初看起来似乎完全是矛盾可笑(paradox),甚至是胡言乱语。
于是就发生了究竟什么是数这个问题。要答复这问题,我们首先必须记着,整个哲学的任务在于由事物追溯到思想,而且追溯到明确的思想。但数无疑是一思想,并且是最接近于感官事物的思想,或较确切点说,就我们将感官事物理解为彼此相外和复多之物而言,数就是感官事物本身的思。因此我们在将宇宙解释为数的尝试里,发现了到形而上学的第一步。毕泰哥拉斯在哲学史上,人人都知道,站在伊奥尼亚哲学家与爱利亚派哲学家之间。前者,有如亚里士多德所指出的,仍然停留在认事物的本质为物质(JBFη)的学说里,而后者,特别是巴曼尼得斯,则已进展到以“存在”为“形式”的纯思阶段,所以正是毕泰哥拉斯哲学的原则,在感官事物与超感官事物之间,仿佛构成一座桥梁。
由此我们可以知道何以有人会以为毕泰哥拉斯认数为事物的本质之说显然走得太远。他们承认我们诚然可以计数事物,但他们争辩道,事物却还有较多于数的东西。说事物具有较多于数的东西,当然谁都可以承认事物不仅是数,但问题只在于如何理解这种较多于数的东西是什么。普通感官意识按照自己的观点,毫不犹豫地指向感官的知觉方面,去求解答这里所提出的问题,因而说道:事物不仅是可计数的,而且还是可见的、可嗅的、可触的等等。用近代的语言来说,他们对于毕泰哥拉斯哲学的批评,可归结为一点,就是他的学说太偏于唯心。但根据我们刚才对于毕泰哥拉斯哲学在历史上的地位所作的评述,事实上恰好相反。我们必须承认事物不仅是数,但这话应理解为单纯数的思想尚不足以充分表示事物的概念或特定的本质。所以,与其说毕泰哥拉斯关于数的哲学走得太远了,毋宁反过来说他的哲学走得还不够远,直到爱利亚学派才进一步达到了纯思的哲学。
此外,即使没有事物自身存在,也会有事物的情状和一般的自然现象存在,其规定性主要也建立在特定的数和数的关系上。声音的差别与音调的谐和的配合,特别具有数的规定性。大家都知道,据说毕泰哥拉斯之所以认数为事物的本质,是由于观察音调的现象所得到的启示。虽说将音调的现象追溯到其所依据的特定的数,对于科学的研究极关重要,但也绝不可因此便容许将思想的规定性全认作仅仅是数的规定性。人们诚然最初有将思想最普遍的规定与最基本的几个数字相联系的趋势,因而说一是单纯直接的思想,二是代表思想的区别和间接性,三是二者的统一。但这种联系完全是外在的,这些数的本身并没有什么性质足以表示这些特定的思想。人们愈是进一步采用这种傅会的方法,特定数目与特定思想的联系就愈会任性武断。譬如人们可以认4为1与3之合,也为这两种数的思想的联合,但4同样也可说是2的两倍。同样9也不仅是3的平方,而又是8与1、7与2等等的总合。认为某种数目或某种图形有特大的重要性,如近来许多秘密团体之所为,这一方面固然无妨作为消遣的玩艺,但另一方面也是思想薄弱的表征。人们固然可以说在这些数字及图形的后面,含有很深的意义,可以引起我们许多思想。但是在哲学里,问题不在于我们可以思维什么,而在于我们现实地思维什么。思想的真正要素不是在武断地选择的符号里,而是只须从思想本身去寻求。
§105
定量在其自为存在着的规定性里是外在于它自己本身,它的这种外在存在便构成它的质。定量在它的外在存在里,正是它自己本身,并自己与自己相联系。在定量里,外在性(亦即量)和自为存在(亦即质)得到了联合。定量这样地在自身内建立起来,便是量的比例,——这种规定性既是一直接的定量,比例的指数,作为中介过程,即某一定量与另一定量的联系,形成了比例的两个方面。同时,比例的这两个方面,并不是按照其直接【数】值计算的,而其【数】值只存在于这种比例的关系中。
附释:量的无穷进展最初似乎是数之不断地超出其自身。但细究起来,量却被表明在这一进展的过程里返回到它自己本身。因为从思想看来,量的无穷进展所包含的意义一般只是以数规定数的过程,而这种以数规定数的过程便得出量的比例。譬如以2∶4为例,这里我们便有两个数,我们所寻求的不是它们的直接的值,而只是这两个数彼此间相互的联系。
但这两项的联系(比例的指数)本身即是一数,这数与比例中的两项的区别,在于此数(即指数)一变,则两项的比例即随之而变,反之,两项虽变,其比例却不受影响,而且只要指数不变,则两项的比例不变。因此我们可以用3∶6代替2∶4,而不改变两者的比例,因为在两个例子中,指数2仍然是一样的。
§106
比例的两项仍然是直接的定量,并且质的规定和量的规定彼此仍然是外在的。但就质和量的真理性来说:量的本身在它的外在性里即是和它自身相联系,或者说,自为存在的量与中立于规定性的量相联合,——这样的量就是尺度(Maβ)。
附释:通过前面所考察了的量的各环节的辩证运动,就证明了量返回到质。我们看见,量的概念最初是扬弃了的质,这就是说,与“存在”不同一的质,而且是与“存在”不相干的,只是外在的规定性。对于量的这个概念,如象前面所说过的,乃是通常数学对于量的界说,即认量为可增可减的东西这一看法的基础。初看起来,这个界说似乎是说,量只是一般地可变化的东西(因为可增可减只是量的另一说法),因而也许会使量与定在(质的第二阶段,就其本质而言,也同样可认作可变化者)没有区别。所以对量的界说的内容可加以补充说,在量里我们有一个可变化之物,这物虽经过变化,却仍然是同样的东西。量的这种概念因此便包含有一内在的矛盾。而这一矛盾就构成了量的辩证法。但量的辩证法的结果却并不是单纯返回到质,好象是认质为真而认量为妄的概念似的,而是进展到质与量两者的统一和真理,进展到有质的量,或尺度。
这里我们还可以说,当我们观察客观世界时,我们是运用量的范畴。事实上我们这种观察在心目中具有的目标,总在于获得关于尺度的知识。这点即在我们日常的语言里也常常暗示到,当我们要确知事物的量的性质和关系时,我们便称之为衡量(Messen)。例如,我们衡量振动中的不同的弦的长度时,是着眼于知道由各弦的振动所引起的与弦的长度相对应的音调之质的差别。同样,在化学里我们设法去确知所用的各种物质相化合的量,借以求出制约这些化合物的尺度,这就是说,去认识那些产生特定的质的量。又如在统计学里,研究所用的数字之所以重要,只是由于受这些数字所制约的质的结果。反之,如果只是些数字的堆集,没有这里所提及的指导观点,那末就可以有理由算作无聊的玩艺儿,既不能满足理论的兴趣,也不能满足实际的要求。
《小逻辑》
黑格尔著 贺麟译
C.尺度(DasMaβ)
§107
尺度是有质的定量,尺度最初作为一个直接性的东西,就是定量,是具有特定存在或质的定量。
附释:尺度既是质与量的统一,因而也同时是完成了的存在。当我们最初说到存在时,它显得是完全抽象而无规定性的东西;但存在本质上即在于规定其自己本身,它是在尺度中达到其完成的规定性的。尺度,正如其他各阶段的存在,也可被认作对于“绝对”的一个定义。因此有人便说,上帝是万物之尺度。这种直观也是构成许多古代希伯来颂诗的基调,这些颂诗大体上认为上帝的光荣即在于他能赋予一切事物以尺度——赋予海洋与大陆、河流与山岳,以及各式各样的植物与动物以尺度。在希腊人的宗教意识里,尺度的神圣性,特别是社会伦理方面的神圣性,便被想象为同一个司公正复仇之纳美西斯(Nemesis)女神相联系。在这个观念里包含有一个一般的信念,即举凡一切人世间的事物——财富、荣誉、权力、甚至快乐痛苦等——皆有其一定的尺度,超越这尺度就会招致沉沦和毁灭。即在客观世界里也有尺度可寻。在自然界里我们首先看见许多存在,其主要的内容都是尺度构成。例如太阳系即是如此,太阳系我们一般地可以看成是有自由尺度的世界。如果我们进一步去观察无机的自然,在这里尺度便似乎退到背后去了,因为我们时常看到无机物的质的规定性与量的规定性,彼此显得好象互不相干。例如一块崖石或一条河流,它的质与一定的量并没有联系。但即就这些无机物而论,若细加考察,也不是完全没有尺度的。因为河里的水和构成崖石的各个组成部分,若加以化学的分析,便可以看出,它们的质是受它们所包含的原素之量的比例所制约的。而在有机的自然里,尺度就更为显著,可为吾人所直接察觉到。不同类的植物和动物,就全体而论,并就其各部分而论,皆有某种尺度,不过尚须注意,即那些比较不完全的或比较接近无机物的有机产物,由于它们的尺度不大分明,与较高级的有机物也有部分的差别。譬如,在化石中我们发现有所谓帆螺壳(Am-monshoBrner),其尺度之分明,只有用显微镜才可认识,而许多别的化石,其尺度之大有如一车轮。同样的尺度不分明的现象,也表现在许多处于有机物形成的低级阶段的植物中,例如凤凰草。
§108
就尺度只是质与量的直接的统一而言,两者间的差别也同样表现为直接形式。于是质与量的关系便有两种可能。第一种可能的关系就是:那特殊的定量只是一单纯的定量,而那特殊的定在虽是能增减的,而不致因此便取消了尺度,尺度在这里即是一种规则。第二种可能的关系则是:定