在彩蛋上的位置而定。面砖连接的角度都有变化,彩蛋中部隆起处小于1度,到末端处仅为7度。由于角度这么小,即使由平的面砖组成,彩蛋也呈平滑弯曲状,三角形面砖是用经过阳极化处理的铝片制成的,重量2,000磅,厚度为八分之一英寸;星形面砖的厚度则为其一半。用于固定的内部结构重3,000磅。彩蛋的长度 25。7英尺,宽度18。3英寸。
雷施说道:“从未用这么大量的同样面砖贴成像彩蛋这样的三维表面。例如,航天飞机上的隔热砖都是形状各异的。如果航天飞机的设计师已经了解我的有关工作,或者我知道他们的问题,那么航天飞机就可以像贴彩蛋那样贴上隔热砖。这样,他们还可以携带备用的隔热砖进入太空。”可实际上由于航天飞机上的每块隔热砖都不同,所以它也无法携带备用隔热砖。航天飞机在高速通过大气层时,隔热砖往往会脱落,这时要贴上一块新砖就必须进行加工。
雷施还说道:“当韦格勒维尔镇雇用我时,协议是由我设计复活节彩蛋,由他们负责建造和油漆。然而,我很清楚,若不约请一家航天公司加工彩蛋面砖,韦格勒维尔镇将无法建造彩蛋。他们肯定担负不了这项工作。所以我告诉他们,还是由我来建造并油漆它。”
面砖的油漆,要在它们组装起来之前进行,此事牵扯到一些让步。该镇希望复活节彩蛋要用色彩鲜艳的红、蓝、绿、橘黄颜色粉饰,而且期望油漆的鲜亮色彩能够保持100年。雷施告诉他们,彩蛋使用这几种颜色油漆,每隔3-5年就要重新油漆一次。最终选用了3种颜色——金色、银色和青铜色,这几种颜色可以保持其光泽半个世纪。
在雷施开始建造彩蛋之前(要把这些面砖在内部连接在一起,而且不能看见其连接头,为此用了6, 978只螺母和螺栓以及 177根连接到中心轴上的支杆),镇的管理条例要求有一位土木工程师或建筑师证明该设计在结构上肯定安全可靠。必须注意到,韦格勒维尔镇经常遭受每小时 100英里风速的飓风袭击,当地的工程师或建筑师没有一位愿意证实,如此巨大的新奇形状在结构上具有完整性。“人们害怕,大风可能把它刮跑,”雷施回忆说,“我也承认有些担心。在建造彩蛋时,我成为指责的目标并受到了指责。”那时候,该工程已获得了势头,而且镇上也完全放弃了需要证明的规定,韦格勒维尔镇的许多居民都在打赌,所赌的不是彩蛋是否可能倒塌,而是如何倒塌(翻倒还是刮跑)以及何对倒塌(建造时还是建造后)。
雷施带领一队志愿人员组装复活节彩蛋,历时6星期。他们曾经历过一次侥幸脱险。当彩蛋的上端部分组装完毕并安装在中心轴的顶端上时,它看来很像一把巨伞。这时空中狂风暴雨肆虐,龙卷风席卷而下。雷施及其伙伴花费整夜时间,把这个伞形结构转向顺风,使它不会被风刮走。
这座复活节彩蛋不仅要顶住自然力量,而且还要面对人们的愤怒。建造彩蛋劳累了一天以后,雷施会累得躺倒在当地一家旅馆中,他听到人们窃窃私语,计划要炸掉彩蛋。他也曾几次接到警告:中学的孩子们声称要炸毁彩蛋。雷施终于弄明白了,在他到达韦格勒维尔镇之前的一段时间内,报纸曾经传播谎言,说镇里把用于建造中学游泳池的经费挪去建造复活节彩蛋。“我只好四处游说,”雷施说道,“竭力向每个人解释彩蛋款项的实际来源,而且学校会有自己的游泳池的。没有人再想要炸掉彩蛋了,可是彩蛋确实遭受过几次来福枪射击。”
在复活节彩蛋完工后很长一段时间里,雷施使用计算机分析其结构的牢固性,并得出结论,它比所需的强10倍。雷施说道:“就是全体居民被大风吹倒,复活节彩蛋也不会。”
自从雷施离开韦格勒维尔镇,10年过去了。当然,该镇依然存在,而这座独具匠心的纪念碑使韦格勒维尔镇出现在地图上(还被收载入女王伊丽莎白的加拿大旅游指南中)。该镇惟一的委屈是这个复活节彩蛋尚未被收入《吉尼斯世界纪录大全》之中。看来这是不公平的,加拿大艾伯塔省的另一个城镇卡尔加里镇就曾因用20,117个鸡蛋烹调出世界上最大的煎蛋饼而载入《吉尼斯世界纪录大全》。
第六章 麦比乌斯分子数学家们吐露,麦比乌斯带只有单面,如果你要将它分成两半,你将会感到十分可笑,因为分开后还是一条带。
——无名氏数学不仅可以在最宏大的规模上帮助进行形状设计,如3层半楼层高的复活节彩蛋,而且还可以在微小的范围内帮助设计。本章将叙述美国博尔德市科罗拉多大学的戴维。沃尔巴及其同事们如何在奇特的麦比乌斯带中合成分子的故事。
神秘的麦比乌斯带是数学家们的宠物。你可以用一条窄纸条制作麦比乌斯带,例如取一条加法器用纸带,半扭转,再把纸带两端连接,形成一闭合环,就成为麦比乌斯带。
麦比乌斯带只有单边,也只有单面。如果你用一把漆刷沿着纸带方向刷漆,那么你将发现,当漆刷回到起点时,它已漆满整个纸带的表面。如果你沿着纸带的一面做一种魔术记号,那么你也会立即相信,纸带只有一个边。
如果你沿着纸带方向把麦比乌斯带剪成两半,果然,就像五打行油诗所说的,它仍然还是一条带子。
1858年,法国巴黎的一家科学协会为数学方面的一篇最优秀论文颁了奖。在这次竞赛提交的论文中,德国莱比锡市的数学家奥古斯特。费迪南德。麦比乌斯“发现了”这种曲面,就是现在以他的名字命名的曲面。麦比乌斯仅用纯数学观点论述了他的发现,例如,没有讨论自然界中存在着麦比乌斯带分子的可能性。
的确麦比乌斯不会想到诸如麦比乌斯带分子存在的可能性,这是因为当时的有机化学科学还处于萌芽阶段,人们即使对最简单的分子形状也一无所知,更不用说对数学有意义的复杂分子了。在麦比乌斯发现的同时,德国波恩大学的奥古斯特。凯库勒宣布他的发现:碳原子可以连接形成长链,它将成为有机化学的基础。
4年前,凯库勒在伦敦的公共马车上,首次在幻想中思考了碳链的问题。他回忆说:“那是一个晴朗的夏夜,我乘坐末班公共马车回家,和往常一样坐在‘车顶的’座位上,通过大城市中没有行人的街道,在平时,那是个充满活力的城市。我陷入幻想,并且好像看见许多原子在我眼前欢跳……我常常看到两个较小的原子如何联合形成偶原子,1个较大的原子如何环抱着两个较小的原子;还有更大的原子如何抓住3个甚至4个较小的原子不放,同时,它们整体如何跳着眼晕的舞蹈快速旋转着。我也看到较大的原子如何形成链子……无论如何,我也要花些夜里的时间,把这些幻想中形成的形态轮廓写进论文中。”
11年以后,1865年,凯库勒认识到碳链子可以环绕着旋转,形成环。而梦幻又一次给他以灵感。“我坐着编写教科书,然而工作毫无进展,我的思维开了小差。我把椅子转向取暖壁炉,并打起盹来。原子再次在我眼前欢跳。这时较小的原子谨慎地呆在基底上。我的心灵眼睛通过这种重复景象而更加敏锐,现在可以辨别出多种形体中较大的结构,长长地排列成行,有时还更紧密地拼接在一起;整行迂回曲折像蛇一样运动。瞧!那是什么?有一条蛇咬住了它自己的尾巴,嘲弄般地在我眼前快速旋转,仿佛一道闪电,把我惊醒了……当天晚上,我就推断出假设的结论。”
首先,凯库勒推导出苯的结构,它由6个碳原子和6个氢原子组成。凯库勒断定,6个碳原子形成六角形,各带有一个氢原子与每个碳原子相连。
自从凯库勒辨明苯的形状以来,120年内有机化学家们当然发现了更为复杂的分子的形状,诸如双螺旋的脱氧核糖核酸分子。但只是在近些年,化学家们才观察到形状呈麦比乌斯带的分子。
麦比乌斯分子不是在自然界中发现的,而是由戴维。沃尔巴及其同事们在实验室里合成的。开始时,他用形状像一架3级梯子的分子合成。(梯子的每级实际上是一个碳…碳的双键,这里可以忽略掉。)然后使梯子环绕着弯曲,再把两端连接,使其实际上形成一个环状物。
环形物中一半仅仅是一条环形带,而在另一半,当它两端连接时,将半截扭转,从而形成一条麦比乌斯带。
麦比乌斯带分子与麦比乌斯纸带一样,都具有许多神秘的性能。如果3个碳双健全部断开,那么分子仍然还是单个分子。碳双键的断开,相当于沿着纸带的中线环绕着把麦比乌斯带分成两半。对于分子和纸带两者来说,结果都是单带,只是其周长为原来的两倍。
化学家们很早就已知道,两种化合物可以有同样的分子式(即由同样化学成分严格地按同样比例组成的化合物),但却以性质不同的化学实体存在。如果同样的化学成分以不同的方式或以不同的角度相互键合时,这种现象就可能发生。然而,两种具有同样分子式的化合物,甚至具有同样的化学键,其在化学性质上也可能不同。怎么会有这种可能呢?
一门叫做拓扑学的数学分支学科可以解释这种现象。它是研究物体在不断发生变形时其性质仍然保持不变的数学学科。设想某物体是由柔性橡胶制成。拓扑学家想要知道,当物体受到推拉但不戳破或撕裂时,什么性质仍然保持不变。可用麦比乌斯带这个实例形象地说明这种抽象概念。假设你有一条橡胶的麦比乌斯带,你可以用一切可能的方法使它伸缩。不管你用多少种方法也都不能使它变形,最后得到的形状总是只有单面。因此,只有单面的性质就是拓扑学家们所关心的事。当一种形状能够连续变形成为另一种形状时,从拓扑学上看,两种形状被认为是等价的,所以,不管把麦比乌斯带伸缩成什么形状,从拓扑学的定义来说,它们也都是等价的。
现在考虑两条麦比乌斯带,一条用橡胶带朝某一方向扭转而成,另一条也用橡胶带但朝相反方向扭转制成。
从拓扑学上看,这两条麦比乌斯带是否等价?它们不等价。两者都不可能变形成为另一种形状。如果你从镜子里看这两条带子中的一条,那么你会看到,其映像很像另一条带;两条带互成镜像。
这里我必须停下来发表一项否认声明,以避免数学家们来信恶意攻击。数学家们都是一群怪人,拓扑学家们都不把自己局限在三维空间之中。而在四维空间中,他们却能证明,镜子里的麦比乌斯带可以互相转变。然而我仍将坚持把我们的讨论限于三维之内,因为我们探究的主要对象分子的形状总是在三维中观察到的。因此,我要重申,在三维中,镜像的麦比乌斯带从拓扑学来看是截然不同的。
成分一样而且化学键相同的两种化学化合物为什么会有性质截然不同的实体,关键在于从拓扑学上看,可能存在着截然不同的镜像。
因为右手和左手都是众所周知的镜像,所以人们习惯地把与其镜像相反的物体称为左手的或右手的。在一对镜像物中,究竟哪一个叫做像,是