《色谱柱的正确安装》

下载本书

添加书签

色谱柱的正确安装- 第1节


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
步骤1。 
检查气体过滤器、载气、进样垫和衬管等检查气体过滤器和进样垫,保证辅助气和检测器的用气畅通有效。如果以前做过较脏样品或活性较高的化合物,需要将进样口的衬管清洗或更换。
步骤2。
将螺母和密封垫装在色谱柱上,并将色谱柱两端要小心切平
步骤3。 
将色谱柱连接于进样口上色谱柱在进样口中插入深度根据所使用的GC仪器不同而定。正确合适的插入能最大可能地保证试验结果的重现性。通常来说,色谱柱的入口应保持在进样口的中下部,当进样针穿过隔垫完全插入进样口后如果针尖与色谱柱入口相差1…2cm,这就是较为理想的状态。(具体的插入程度和方法参见所使用GC的随机手册)避免用力弯曲挤压毛细管柱,并小心不要让标记牌等有锋利边缘的物品与毛细柱接触摩擦,以防柱身断裂受损。将色谱柱正确插入进样口后,用手把连接螺母拧上,拧紧后(用手拧不动了)用扳手再多拧1/4…1/2圈,保证安装的密封程度。因为不紧密的安装,不仅会引起装置的泄漏,而且有可能对色谱柱造成永久损坏。
步骤4。 
接通载气当色谱柱与进样口接好后,通载气; 调节柱前压以得到合适的载气流速(见下表)。

柱前压设置为Psi
15m 25m 30m 50m 100m
0。20mm 10…15 20…30 18…30 40…60 80…120
0。25mm 8…12 13…22 15…25 28…45 55…90
0。32mm 5…10 8…15 10…20 16…30 32…60
0。53mm 1…2 2…3 2…4 4…8 6…14
(以上仅为建议的起始设置,具体数值要依据实际的载气流速。)将色谱柱的出口端插入装有己烷的样品瓶中,正常情况下,我们可以看见瓶中稳定持续的气泡。如果没有气泡,就要重新检查一下载气装置和流量控制器等是否正确设置,并检查一下整个气路有无泄漏。等所有问题解决后,将色谱柱出口从瓶中取出,保证柱端口无溶剂残留,再进行下一步的安装。
步骤5。 
将色谱柱连接于检测器上其安装和所需注意的事项与色谱柱与进样口连接大致相同。如果在应用中系统所使用的是ECD或NPD等,那么在老化色谱柱时,应该将柱子与检测器断开,这样检测器可能会更快达到稳定。
步骤6。 
确定载气流量,再对色谱柱的安装进行检查注意:如果不通入载气就对色谱柱进行加热,会快速且永久性的损坏色谱柱。
步骤7。 
色谱柱的老化色谱柱安装和系统检漏工作完成后,就可以对色谱柱进行老化了。
对色谱柱升至一恒定温度,通常为其温度上限。特殊情况下,可加热至高于最高使用温度10…20℃左右,但是一定不能超过色谱柱的温度上限,那样极易损坏色谱柱。当到达老化温度后,记录并观察基线。初始阶段基线应持续上升,在到达老化温度后5…10分钟开始下降,并且会持续30…90分钟。当到达一个固定的值后就会稳定下来。如果在2…3小时后基线仍无法稳定或在15…20分钟后仍无明显的下降趋势,那么有可能系统装置有泄漏或者污染。遇到这样的情况,应立即将柱温降到40℃以下,尽快的检查系统并解决相关的问题。如果还是继续的老化,不仅对色谱柱有损坏而且始终得不到正常稳定的基线。
一般来说,涂有极性固定相和较厚涂层的色谱柱老化时间长,而弱极性固定相和较薄涂层的色谱柱所需时间较短。而PLOT色谱柱的老化方法有各不相同。PLOT柱的老化步骤:HLZ Pora 系列 250℃, 8小时以上Molesieve(分子筛) 300℃ 12小时Alumina(氧化铝) 200℃ 8小时以上由于水在氧化铝和分子筛PLOT柱中的不可逆吸附,使得这两种色谱柱容易发生保留行为漂移。当柱子分离过含有高水分样品后,需要将色谱柱重新老化,以除去固定相中吸附的水分。
步骤8。 
设置确认载气流速对于毛细管色谱柱,载气的种类首选高纯度氮气或氢气。载气的纯度最好大于99。995%,而其中的含氧量越少越好。如果您使用的是毛细管色谱柱,那么依照载气的平均线速度(cm/sec);而不是利用载气流量(ml/min)来对载气做出评价。因为柱效的计算采用的是载气的平均线速度。推荐平均线速度值:氮气:10…12cm/sec 氢气:20…25cm/sec载气杂质过滤器在载气的管线中加入气体过滤装置不仅可以延长色谱柱寿命,而且很大程度的降低了背景噪音。建议最好安装一个高容量脱氧管和一个载气净化器。使用ECD系统时,最好能在其辅助气路中也安装一个脱氧管。
步骤9。 
柱流失检测在色谱柱老化过程结束后,利用程序升温作一次空白试验(不进样)。一般是以10℃/min从50℃升至最高使用温度,达到最高使用温度后保持10min。这样我们就会的到一张流失图。这些数值可能对今后作对比试验和实验问题的解决有帮助。在空白试验的色谱图中,不应该有色谱峰出现。如果出现了色谱峰,通常可能是从进样口带来的污染物。如果在正常的使用状态下,色谱柱的性能开始下降,基线的信号值会增高。另外,如果在很低的温度下,基线信号值明显的大于初始值,那么有可能是色谱柱和 GC系统有污染。其他:色谱柱的保存用进样垫将色谱柱的两端封住,并放回原包装。在安装时要将色谱柱的两端截去一部分,保证没有进样垫的碎屑残留于柱中。 
 注意:当空气中氢气的含量在4…10%时,就有爆炸的危险。所以一定要保证实验室有良好的通风系统。


色谱法的分类
4。 按使用领域不同对色谱仪的分类

                实验室用色谱仪
        分析用色谱仪                
                        便携式色谱仪
        流程色谱仪                
                        实验室用制备色谱仪
        制备用色谱仪                
                        工业用大型制备色谱仪
2 色谱流出曲线及有关术语
气固色谱:GC是以气体作为流动相的一种色谱法。
利用不同物质在固体吸附剂上的物理吸附…解吸能力不同实现物质的分离。
应用范围:只适于较低分子量和低沸点气体组分的分离分析。
GSC        固定相        应用
        多孔固体        O2;N2;CO2等稳定气体,低沸点化合物
气液色谱:它是利用待测物在气体流动相和固定在惰性固体表面的液体固定相之间的分配原理实现分离。
GLC        固定相        应用
        惰性载体涂渍高沸点固定液        广泛

1 概述
1。1 色谱发展概况
最早创立色谱法的是俄国植物学家Tswett。他在研究植物叶子的色素成分时,将植物叶子的萃取物倒入填有碳酸钙的直立玻璃管内,然后加入石油醚使其自由流下,结果色素中各组分互相分离形成各种不同颜色的谱带。当时Tswett把这种色带叫做“色谱”(Chromatographie,Tswett于1906年发表在德国植物学杂志上用此名,英译名为Chromatogra… phy),在这一方法中把玻璃管叫作“色谱柱”,碳酸钙叫作“固定相”,纯净的石油醚叫作“流动相”。
在Tswett提出色谱概念后的20多年里没有人关注这一伟大的发明。直到1931年德国的Kuhn和Lederer才重复了Tswett的某些实验,用氧化铝和碳酸钙分离了α…,β…,和γ…胡萝卜素,此后用这种方法分离了60多种这类色素。Martin和Synge在 1940年提出液液分配色谱法(Liquid-Liquid Partition Chromatography),即固定相是吸附在硅胶上的水,流动相是某种有机溶剂。1941年Martin和Syngee提出用气体代替液体作流动相的可能性,11年之后James和Martin发表了从理论到实践比较完整的气液色谱方法(Gas-Liquid Chromatography),因而获得了1952年的诺贝尔化学奖。在此基础上,1957年Golay开创了开管柱气相色谱法(Open-Tubular Column Chromatography),习惯上称为毛细管柱气相色谱法(Capillary Column Chromatography )。1956年Van Deemter等在前人研究的基础上发展了描述色谱过程的速率理论,1965年Giddings总结和扩展了前人的色谱理论,为色谱的发展奠定了理论基础。另一方面早在1944年Consden等就发展了纸色谱,1949年Macllean等在氧化铝中加入淀粉粘合剂制作薄层板使薄层色谱法(TLC )得以实际应用,而在1956年Stahl开发出薄层色谱板涂布器之后,才使TLC得到广泛地应用。在60年代末把高压泵和化学键合固定相用于液相色谱,出现了高效液相色谱(HPLC)。80年代初毛细管超临界流体色谱(SFC)得到发展,但在90年代后未得到较广泛的应用。而在80年代初由Jorgenson等集前人经验而发展起来的毛细管电泳”(CZE),在90年代得到广泛的发展和应用。同时集HPLC和CZE优点的毛细管电色谱在90年代后期受到重视。到21世纪色谱科学将在生命科学等前沿科学领域发挥不可代替的重要作用。 
色谱法在分析化学中的地位和作用 
色谱分析法的特点是它具有高超的分离能力,而各种分析对象又大都是混合物,为了分析鉴定它们是由什么物质组成和含量是多少,必须进行分离,所以色谱法成为许多分析方法的先决条件和必需的步骤。从表5…1的数据可以看出色谱法在近年来各类分析化学方法中占在十分重要的地位。
1。2 色谱法的特点
色谱法是以其高超的分离能力为特点,它的分离效率远远高于其它分离技术如蒸馏、萃取、离心等方法。
(1)分离效率高。例如毛细管气相色谱柱(0。1~0。25μm i。 d.)30~50m其理论塔板数可以到 7万~12万。而毛细管电泳柱一般都有几十万理论塔板数的柱效,至于凝胶毛细管电泳柱可达上千万理论塔板数的柱效。
(2)应用范围广。它几乎可用于所有化合物的分离和测定,无论是有机物、无机物、低分子或高分子化合物,甚至有生物活性的生物大分子也可以进行分离和测定。
(3)分析速度快。一般在几分钟到几十分钟就可以完成一次复杂样品的分离和分析。近来的小内径(0。1mm i。 d.)、薄液膜(0。2μm)、短毛细管柱(1~10 m)比原来的方法提高速度5~10倍。
(4)样品用量少。用极少的样品就可以完成一次分离和测定。
(5)灵敏度高。例如GC可以分析几纳克的样品,FID可达10…2g/s,ECD达10…3g/s;检测限为10…9 g/L和10…12 g/L的浓度。
(6)分离和测定一次完成。可以和多种波谱分析仪器联用。
(7)易于自动化,可在工业流程中使用。

1。3 色谱法的分类
色谱法或色谱分析(chromatography)也称之为色层法或层析法,是一种物理化学分析方法,它利用混合物中各物质在两相间分配系数的差别,当溶质在两相间做相对移动时,各物质在两相间进行多次分配,从而使各组分得到分离。可完成这种分离的仪器即色谱仪。
色谱法的分类可按两相的状态及应用领域的不同分为两大类。
1。        按流动相分
        气相色谱 gas chromatography (GC) 
–        流动相是气体,固定相是固体吸收剂或液体(涂在固体上) 。
        液相色谱 liquid chromatography (LC) 
–        液体作为动流动相。 
2。        按分离机理分类
    
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架