《重生之神级学霸》

下载本书

添加书签

重生之神级学霸- 第222节


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
  “第二个是3x+1Wèntí,从任意一个正整数开始,重复对其进行下面的操作:如果这个数是偶数,把它除以2;如果这个数是奇数,则把它扩大到原来的3倍后再加1。大家会发现,序列最终总会变成4;2;1;4;2;1;…的循环。例如,所选的数是67,根据上面的规则可以依次得到:67;202;101;304;152;76;38;19;58;29;88;44;22;11;34;17;52;26;13;40;20;10;5;16;8;4;2;1;4;2;1……数学家们试了很多数,没有一个能逃脱‘421陷阱’。但是,是否对于所有的数,序列最终总会变成4;2;1循环呢?”
  同学们讨论纷纷,甚至有些已经开始尝试验算起来。
  刘猛继续说道:“这个Wèntí可以说是一个巨坑乍看之下,Wèntí非常简单。突破口很多,于是很多数学家们纷纷往里面跳;殊不知进去容易出去难,不少数学家到死都没把这个Wèntí搞出来。已经中招的数学家不计其数。这可以从3x+1Wèntí的各种别名看出来:3x+1Wèntí又叫Collatz猜想、SyracuseWèntí、KakutaniWèntí、Hasse算法、UlamWèntí等等。后来,由于命名争议太大,干脆让谁都不沾光,直接叫做3x+1Wèntí算了。”
  “在数论上,只要推广到无限的数看似简单的命题都是非常难以证明的,因为你总无法用穷举法去一一证明吧,著名的黎曼猜想、费马大定理、哥德巴赫猜想都属于这种情况。3x+1Wèntí也是如此,直到现在,数学家们仍然没有证明。这个规律对于所有的数都成立。在坐的同学们,如果有谁能够证明这个Wèntí,那么他将是最伟大的数学家之一,至少是这个地球上最著名的前十人之一。至少也比众所周知的陈景润、华罗庚要厉害得多。”
  同学们顿时炸成一锅粥。听起来如此简单的Wèntí竟然破解了可以超越课本上那些出名的数学家,对于高中学生,特别是一座偏僻小城的高中生来说,简直就是打开了另一个天地,一股热血上涌,平时自诩比较聪明的同学都等不及拿出纸和笔来验算一番,幻想着一下下就能解决Wèntí,扬名立万。被水木大学、燕京大学破格录取……等等,年轻人总是容易冲动且天真的、充满幻想的。
  刘猛的演讲对这些同学们来说是极为简单的。在坐的就是数学很烂一直不及格的同学都能很容易理解这些Wèntí,但是又是极为不同的,对他们的冲击可想而知,这种效果刘猛很满意,同时也有了一些想法,实际上越是年轻接触这些世界性的难题破解的几率就越大,就像怀尔斯就是在儿童时期接触的费马大定理,孔老师接触到哥德巴赫猜想已经是高中了,就有些晚了,在童年的时候有思索,等到大学读完有了手段,就极有Kěnéng有了新的思路,就极有Kěnéng取得大成就,然而如今的华夏教学在初、高中阶段学习了太多具有难度没有创新性的知识,学生们总是在一遍一遍做着题目,甚至有些所谓的知名高中每个星期都要考试,周末甚至都要补课,所谓的升学率确实闪瞎眼球,但是这些饱受压抑的高中生们进入大学后会干什么呢?
  被压抑的青春荷尔蒙爆发了,那些错过的电视剧、电影、游戏一窝蜂都要补回来,对于异性的好奇和躁动也都要爆发出来,进入大学校园,简直就到了春天的动物园,就如同赵老师说的那句一样,“春天到了,动物们求偶交配的季节……”
  90%以上的大学生一个个猥琐的整天谈论女人,有几个对科学Wèntí感兴趣的,这就是华夏教学最大的弊端,不管是家长和老师总喜欢提前把知识灌输到孩子的脑子里,那到底有什么用呢?相对来说,刘猛是比较推崇美国的教学方式,那就是让真正有兴趣的学生学的更加深入,Kěnéng大多数人都很误解,觉得美国的高中数学、物理、化学等太简单了,这是错误的,美国的高中基本教学确实很简单,但是同学们可以自己选修高难度的课程,比如你对数学敢兴趣你就可以选修数学的进阶课程,这些进阶课程可是华夏大一的高等数学啊,对于其他科目也同样如此,就是让敢兴趣的那部分同学学的更加深入。
  而不是华夏这种大锅饭的教学手法,所有人都去认真学习元素周期表、各种复杂的化学反应、复杂的有机物结构式、复杂的力学公式、复杂的动量守恒、复杂的各种数学知识,但是多少人真正感兴趣呢?多少人在以后十年内真正使用这些知识呢?多少人毕业没几年就把这些学到的应付考试的东西全部还给了老师呢?应该也是绝大部分人吧!这是整个社会少年人智力的浪费,比八股文的科举考试还荼毒,是非常不科学的,严重阻碍社会的进步。
  刘猛突然觉得这次的演讲非常有意义,为年轻人打开局限的天空。这些数学小Wèntí甚至初中生都能懂,启蒙应该更早一些,想到此有了一些想法继续说道:“下一个小Wèntí是特殊两位数乘法的速算。如果两个两位数的十位相同,个位数相加为10,那么你可以立即说出这两个数的乘积。如果这两个数分别写作AB和AC,那么它们的乘积的前两位就是A和A+1的乘积,后两位就是B和C的乘积。比如,47和43的十位数相同,个位数之和为10。因而它们乘积的前两位就是4×(4+1)=20,后两位就是7×3=21。也就是说,47×43=2021。类似地。61×69=4209,86×84=7224,35×35=1225,等等。那么到底为什么呢?”刘猛说完笑着提出了这个Wèntí本后的本质。
  同学们立刻思考起来。不一会儿一个前排很瘦小的同学举手说道:“我Zhīdào。”
  刘猛很高兴。示意他说出来,这个同学很激动,站起来说道:“这个速算方法背后的原因是,这样的两位数可以表示位(10x+y)和(10x+(10y)),相乘的话就是100x(x+1)+y(10y),对任意x和y都成立,所以才能那样速算。”
  刘猛赞叹道:“确实如此,看来这位同学对数学很感兴趣。不妨少听一些老师的讲课,把高中的内容学完之后尽快研究一些有难度的、具有创新性的数学命题。所取得的成就定然不小。”
  得到刘猛的赞同,这些同学非常激动,胸口都起伏着,脸上非常的自豪和骄傲。刘猛是谁?那是华夏如今最著名的数学家,没有之一,甚至超越了以往华夏的其他知名数学家,能得到他的赞扬,这是多高的荣誉啊?无怪乎把这个学生激动成这样。
  “幻方,大家应该都玩过,一个三阶幻方是指把数字1到9填入3×3的方格,使得每一行、每一列和两条对角线的三个数之和正好都相同。比如第一行8、1、6;第二行3、5、7;第三行4、9、2;每条直线上的三个数之和都等于15。同学们或许都听说过幻方,但Kěnéng不Zhīdào幻方中的一些美妙的性质。例如,任意一个三阶幻方都满足,各行所组成的三位数的平方和,等于各行逆序所组成的三位数的平方和。对于刚才所说的三阶幻方,就满足,816、357、492的平方之和就等于618、753、294的平方之和,至于为什么会有这个性质呢?感兴趣的同学们可以自己去证明一下,利用高中学到的知识就能够证明,呵呵,数学最重要的是思维,可不是手段,所以呀,初等数学未必就不如高等数学厉害,甚至于初等数学中蕴含的思维比高等数学还要巧妙。”
  刘猛今天所讲的这些数学的小Wèntí,是真的把大家的兴趣都勾了起来,最主要的就是都是简单的Wèntí,但是经过刘猛这一说,突然就高端大气起来,竟然解决这样简单的Wèntí就成了最牛逼的数学家,比那些奥数获得金奖的同学还牛逼,一条崭新的康庄大道出现在眼前,让这些整天都在学习、复习、考试、补课的枯燥和压抑中等待着高考的到来希望能够考上一个重点大学的学生们有种茅塞顿开之感。
  “196算法,一个数正读反读都一样,我们就把它叫做回文数。随便选一个数,不断加上把它反过来写之后得到的数,直到得出一个回文数为止。例如,所选的数是67,两步就可以得到一个回文数484:67+76=143,143+341=484,把69变成一个回文数则需要四步:69+96=165,165+561=726,726+627=1353,1353+3531=4884,89的回文数之路则特别长,要到第24步才会得到第一个回文数,8813200023188。”
  “同学们或许会想,不断地‘一正一反相加’,最后总能得到一个回文数,这当然不足为奇了。事实情况也确实是这样对于几乎所有的数,按照规则不断加下去。迟早会出现回文数。不过,196却是一个相当引人注目的例外。数学家们已经用计算机算到了3亿多位数,都没有产生过一次回文数。从196出发。究竟能否加出回文数来?196究竟特殊在哪儿?这至今仍是个谜,如果你们之中谁能破解这个谜,说不定能开辟出数论的一个新的分支出来。”
  刘猛抛出的几个看似简单还未解决的Wèntí已经把同学们弄的亟不可待了,对此刘猛是深知这些高中的孩子的,想当初老师在讲苯环的结构时就曾说过如果哪个同学能够解决类似的Wèntí就能拿到诺贝尔奖,当时同学们听了之后是多么的激动啊,如今刘猛把这些如今简单又如此具体。而且都未解决的Wèntí抛给同学们,那结果可想而知了,整个过程。同学们都是热血沸腾的,恨不得马上就能解决了刘猛所说的Wèntí中的一个,或者全给解决了。
  唯一的解
  “经典数字谜题:用1到9组成一个九位数,使得这个数的第一位能被1整除。前两位组成的两位数能被2整除。前三位组成的三位数能被3整除,以此类推,一直到整个九位数能被9整除。你们没听错,真的有这样猛的数:381654729。其中3能被1整除,38能被2整除,381能被3整除,一直到整个数能被9整除。这个数既可以用整除的性质一步步推出来,也能利用计算机编程找到。另一个有趣的事实是。在所有由1到9所组成的362880个不同的九位数中,381654729是唯一一个满足要求的数!”
  “数在变。数字不变,123456789的两倍是246913578,正好又是一个由1到9组成的数字。246913578的两倍是493827156,正好又是一个由1到9组成的数字。把493827156再翻一倍,987654312,依旧恰好由数字1到9组成的。把987654312再翻一倍的话,将会得到一个10位数1975308624,它里面仍然没有重复数字,恰好由0到9这10个数字组成。再把1975308624翻一倍,这个数将变成3950617248,依旧是由0到9组成的。那么,这个规律是否会一直持续下去?等下同学们自己去验算吧。”
  刘猛连续讲了几个数论中有趣的小Wèntí,场下的同学们都是兴趣盎然,不仅如此,就连坐在下面的县长、县教育局长、学长以及多位老师都听的聚精会神的,一些教数学的老师都忍不住按照刘猛的思路去验算起来,县长叹道:“你们都听听,大师就是不一样,能够深入浅出把那么高深的Wèntí说的我们大家都明白,你们老师教课就该如此,有时候我儿子的作业拿回来,才仅仅初中,我都有时候看不明白,这就是差距,蠢材总喜欢把简单的Wèntí复杂化好体现出自己不够蠢,有Zìxìn的天才是把最复杂的Wèntí简单化让大家都明白。”
  
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架