②意指斯泮雪浦。
…… 367
形而上学。
563。
信他的陈述而承认意式数的存在,这样的数对于别的事物又有什么作用?说这样的数存在的人,既未主张这是任何事物的原因,我们确也未观察到它曾是任何事物的原因(他宁说这是一个只为自己而存在的独立实是)
;至于算术家的诸定理,则我们前曾说过,即便应用于可感觉事物也全部合适。
①
章 三至于那些人设想了意式之存在,并照他们的假定以意式为数——由于脱离实例而抽象设词的方法——他们假定了各普遍词项的一致性,进而解释数之必须存在。可是,他们的理由既不充实亦非可能,人们必不因为这些理由而相信数之存在为独立实是。再者,毕达哥拉斯学派看到许多可感觉事物具有数的属性,②便设想实事实物均为数,——不是说事物可用数来为之计算,而说事物就是数所组成。
其故何在?
在乐律,在天体,在其它事物上均见有数的属性。
③那些说只有数学之数存在的人④,照他们自己的立论,本不该讲这一类道理,可是他们却常说这些可感觉事物不能作学术的主题。照我们前曾说过的,⑤我们确认这些就是学术的主题。
数学对象显然不能离可感觉事物而独立存在;如果独在,则实体之中就见不到它们的属性了。在这一方面毕达哥拉斯学派并不引
①参看卷M,章三全章,注意107b17—22。
②参看上文1090a4—7。
③参看卷A,989b29—990a29。
④指斯泮雪浦。
⑤参看卷M,章三。
…… 368
。
63。形而上学
人反对;该被批评的只是他们用数来构成自然体,用无轻无重的事物构成有轻有重的事物,他们所说的天体,以及其它实物,不象是这个可感觉世界的事物。但那些以数为可分离的人,常认为“可感觉事物非真实”
,而“数式才是真实的公理”
,并诉之于性灵①以指陈数必须存在也必须独立于事物之外;于几何对象亦复相似。于是,这是明显的,与此相抗衡的数论②,其说既与之相背,我们现在也正要提出疑问,③数若不存在于可感觉事物之内,何以可感觉事物表现有数的属性,执持数为独在的人们均应该解答这个疑问。
有些人看到点为线之端亦为线之限,线之于面,面之于体亦然,因而认为这些必是一类实物。所以,我们必须加以察核,其理由或甚薄弱。因为(一)极端只为这些事物的限度,自身并非本体。步行或运动一般地必有所终止,照他们的立论,这些也将各成为一“这个”
,为一本体了。这是荒谬的。
(二)就算这些也是本体,它们也应是这感觉世界上的本体;而他们的立论却正在想脱离这感觉世界。它们怎么能分离而得自在?
又,关于一切数与数学对象,我们倘仍以所论为意有未尽,可慎重提出这一问题,先天数〈数学对象〉之于后天数〈几何对象〉,它们互不相为资益。对于那些专想维持数学对
①σαιι原义为“摇动”
,如狗摇尾;拉丁译文作adblandinutur。一百五十F E年间四种英译本译法各不同,兹从特来屯尼克1933新译本,(增“ιΨι”)而G F K J F译作“诉之于性灵”。
②指1090a20—25,毕达哥拉斯数论。
③1090a29。
…… 369
形而上学。
763。
象之存在的人①,假如数不存在,空间量度也不会存在,而空是量度若不存在,灵魂与可感觉实体却会得存在。但从所见世界的真象看来,自然体系并不象一篇各幕缺少联系的坏剧本。对于相信意式的人,这疑难是被忽略了;他们由物质与数制作空间量度,由数2制线,更毫不怀疑地,由3制面,由4制体,②——或者他们另用别的数来制作,这也并无分别。
然而这些量度将会成为意式么,或其存在的情况又如何,对于事物又有何作用?这些全无作用,正象数学对象之全无作用一样。人们若不想干涉数学对象来创立自己的原则,他就难以从他们的任何定理得其实用,但这并不难设想一些随意的假定,由此纺出一长串的结论。
于是,这些思想家③为要将数学对象结合于意式就投入了这样的错误。那些最初主于数有意式与数学两类的人并没有说原也是不能说数学之数怎样存在和由什么组成。他们把数学数安置在意式数与可感觉数之间。
(一)假如这由“大与小”组成,这将与意式数相同,(他④由某些品种的大与小制成空间度量。
⑤)
(二)假如他举出其它要素,制数的物质要素也未免太多了。假如两类制数的第一原理均为同一事物,那
①指斯泮雪浦;参看卷Z章二,卷A章十二。
②意大利学派的数学和几何演算都是用卵石来排列着进行的。
二粒卵石可定一条线,三粒可定一个三角形(面)
,四粒可定一个锥形四面体(立体)。所以2,3,4实际是决定线、面、体三者所必需的最少的卵石数。
③从20—32行似均指齐诺克拉底。
④指柏拉图。
⑤参看1090b21—22。
…… 370
。
863。形而上学
么元一将于这些为共通的形式原理。而我们就得追问怎么“一”既可当作许多事物,何以照他所说,数却不能迳由一制成,而只能由“一”和“未定之两”衍生。
所有这些都是荒谬的,而且都是互相冲突并自相矛盾的。
我们在这些理论中似乎见到了雪蒙尼得的长篇文章,①那是奴隶们在隐瞒真实缘由时,矫揉造作起来的。
“大与小”这些要素对于硬要它们做不克胜任的事情似乎也在抗议;它们实在所能制的数并不异于一乘二而又连乘所得的那些数。
②
把永恒事物赋予创造过程这也是荒谬的,或者竟是不可能的。
这毋需置疑于毕达哥拉斯学派曾否以创造属之于永恒事物;因为他们明白地说过无论是由面或表面,或种籽,或那些他们所未能说明白的元素,来构成元一,总是一经构制,原来那无所限的便立即为这些极限所定限了。
③既然他们是在构制一个世界,而是以自然科学的言语建立理论,对于这样的理论我们加以察核,自非过当,但在目前这研究中姑让它去吧;我们现在研究的是在那作用于诸不变事物的原理,我
①μαρ或译长句,雪蒙尼得文中有ιααι一节,举奴隶答主人J H I M H M H G J H质询例,辞多支离,违避要点,故敷衍而冗长。参看贝尔克(Bergk)编“雪蒙尼得残篇”189。
②假定“大与小”或“未定之两”是在倍乘,参看卷M,章七1082a14。
③参看“物学”卷三第四章,卷四第六章全章。又参看菩纳脱“早期希腊哲学”第53节。
…… 371
形而上学。
963。
们必须研究这一类数的创生。
①
这些思想家说奇数没有创造过程,这就等于说偶数出于创造;有些人并指明偶数是最先由“不等”制成的——当“大与小”平衡为“等”时就创出偶数。
②那么,“不等”在被平衡以前当必属于“大与小”。假如大与小常是被平衡,那么在先便没有“不等”
;因为所常在的只是等,不等就是不常在了。所以明显地,他们引进数的创造说,于理论并无裨益。
③
章 四要素与原理如何与美和善相关的问题中,存着有一个疑难,人们若不能认取这疑难是该受责备的。疑难是这样:在诸要素中是否有我们所意指善与至善这样一个要素,或则本善与至善应后于诸要素。神学家们似乎与现代某些思想家相符,④他们以否定答复这问题,说善与美只在自然业已有些进境之后才得出现于事物之中。
(他们这样做是旨在避免有些人以“元一”为第一原理所遭遇的訾议。引起异议的实际并不因为他们以善为第一原理之属性,而是由于他们把一当作制数的要素使之成为一个原理,这才引起了异议。
老诗人们说,君临宇宙而统治万有的,已不是那些代表宇宙原始力量的夜
①贝刻尔本,第杜本,及罗斯译本均以此行为第三章终,但下文23—28实与此节相承。有些抄本章四由29行起。
②参看卷M,章七1081a25—26。
③参看“说天”卷一,279b32—280a10。
④指斯泮雪浦;参看卷A,1070b31。
…… 372
。
073。形而上学
与天①或混沌②,或奥基安〈海洋〉③,而是宙斯④,这里他们的诗情符合于这思想。这些诗人这样说,正因为他们想到世界的统治者是在变换;至于那些全不用神话语调的人们,例如费勒色将⑤与某些人,就合并了善与美而以“至善”为原始的创造者;麦琪们⑥与较晚出的先哲们亦复如是,例如恩培多克勒与阿那克萨哥拉:前者以友爱为要素之一,后者以理性为第一原理。执持有不变本体存在的人,有些人说本一亦即本善;但他们认为本善的性质以元一为主。
于是,两说孰是?假如基本而永恒的,最为自足的事物竟然并不主要地赋有“善”这样最自足自持的素质,这正该诧异了。
事物之自足而不灭坏者,除由于其本性之善而外,实在找不到其它缘由。所以,说善是第一原理,宜必不错;若说这原理该就是元一,或说若非元一,至少,亦应是列数的一个要素,这些都是不可能的。
为了避免强烈的反对意见,有些人放弃了这理论⑦(那些人主张一为要素亦为第一原理的人,从此便将“一”限为数学之数的原理与要素)
;因为照“元一即本善”这理论,诸一将与善的诸品种为相同,而世上
①奥菲克宗以宇宙始于夜与天。
②宇宙原先属于混沌,见希萧特“原神”116。
③“海洋”神见荷马“伊里埃”第十四卷201。
④参看卷A,1071b26。
⑤茜洛人费勒色特(PherecydesofSyros)
(约公元前60—525)以宙斯为三原神之一。
(参看第尔士“先苏格拉底”201,202。)费为泰勒斯弟子。
⑥麦琪()为波斯查罗亚斯德宗僧侣作阶级。
‘ ^ k l ‘ ^⑦如斯泮雪浦,不复坚持元一与本善为相同。
…… 373
形而上学。
173。
的善也就未免太多了。又,如诸通式均为数,则所有一切通式又将与善的诸品种相同。让人们设想任何事物的意式。假如所拟只有诸善的意式,则这些还不是诸本体的意式〈而只是素质的意式〉;假如又设想这些是诸本体的意式,那么一切动植物与一切事物凡参与于意式的均将是善〈因为意式具有善质〉。
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。
赞一下
添加书签加入书架